Propensity.Score.nostrata(TrialSize)
Propensity.Score.nostrata()所属R语言包:TrialSize
Propensity Score ignoring strata
倾向分数忽略阶层
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Combining data across J strata. Still use weighted Mantel_Haenszel test.
组合Ĵ地层上的数据。还使用权Mantel_Haenszel测试。
H0: pj1=pj2,
H0:PJ1 PJ2,
Ha: pj2*qj1/(pj1*qj2)=phi, which is not equal to 1
哈:PJ2 QJ1 /(PJ1 * QJ2)=φ,这是不是等于1
用法----------Usage----------
Propensity.Score.nostrata(alpha, beta, J, a, b, p1, phi)
参数----------Arguments----------
参数:alpha
significance level
显着性水平
参数:beta
power = 1-beta
功率= 1-β
参数:J
There are totally J stratas.
总共有Ĵ拉塔斯。
参数:a
a=c(a1,a2,...,aJ), aj=nj/n denote the allocation proportion for stratuum j (sum(aj)=1)
A = C(A1,A2,...,AJ),AJ = NJ / n表示分配比例为stratuumĴ(总和(AJ)= 1)
参数:b
b=c(b11,b21,...,bJ1), bjk=njk/nj, k=1,2 denote the allocation proportion for group k within stratum j (bj1+bj2=1). Assume group 1 is the control.
= C(B11,B21,...,BJ1),BJK = NJK / NJ,K = 1,2分别表示为:内K组地层Ĵ(BJ1 + BJ2 = 1)的分配比例。假设第1组是控制。
参数:p1
p1=c(p11,p21,....,pj1), pjk denote the response probability for group k in stratum j. qjk=1-pjk.
P1 = C(P11,P21,...,PJ1),PJK表示响应概率为K组地层中Ĵ。 qjk = 1-PJK。
参数:phi
pj2*qj1/(pj1*qj2)=phi, so that pj2=phi*pj1/(qj1+phi*pj1)
PJ2 * QJ1 /(PJ1 * QJ2)= PHI,使PJ2 =披* PJ1 /(QJ1 +披* PJ1)
参考文献----------References----------
实例----------Examples----------
Example.15.2.3.2<-Propensity.Score.nostrata(0.05,0.2,5,c(0.15,0.15,0.2,0.25,0.25),c(0.4,0.4,0.5,0.6,0.6),c(0.5,0.6,0.7,0.8,0.9),2)
Example.15.2.3.2
# 1151[1151]
## The function is currently defined as[#功能目前被定义为]
function(alpha, beta,J,a,b,p1,phi){
p2=phi*p1/(phi*p1+1-p1)
p1star=sum(a*b*p1)/sum(a*b)
p2star=sum(a*(1-b)*p2)/sum(a*(1-b))
pstar=sum(a*(b*p1+(1-b)*p2))
b1=sum(a*b)
b2=sum(a*(1-b))
sigma1star=p1star*(1-p1star)/b1+p2star*(1-p2star)/b2
sigma0star=pstar*(1-pstar)*(1/b1+1/b2)
n=(sqrt(sigma0star)*qnorm(1-alpha/2)+sqrt(sigma1star)*qnorm(1-beta))^2/(p1star-p2star)^2
}
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|