找回密码
 注册
查看: 1698|回复: 0

R语言 ghyp包 logLik-AIC-methods()函数中文帮助文档(中英文对照)

  [复制链接]
发表于 2012-9-18 21:10:27 | 显示全部楼层 |阅读模式
logLik-AIC-methods(ghyp)
logLik-AIC-methods()所属R语言包:ghyp

                                        Extract Log-Likelihood and Akaike's Information Criterion
                                         提取对数似然和赤池信息标准

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The functions logLik and AIC extract the Log-Likelihood and the Akaike's Information Criterion from fitted generalized hyperbolic distribution objects.  The Akaike information criterion is calculated according to the formula -2 * log-likelihood + k *   npar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual AIC.
的功能logLik和AIC提取的对数似然和赤池信息标准装广义双曲分布对象。赤池信息量准则是根据公式计算-2 * log-likelihood + k *   npar,其中npar代表拟合模型中的参数,k = 2通常AIC。


用法----------Usage----------


## S4 method for signature 'mle.ghyp'
logLik(object, ...)

## S4 method for signature 'mle.ghyp'
AIC(object, ..., k = 2)



参数----------Arguments----------

参数:object
An object of class mle.ghyp.
对象的类mle.ghyp。


参数:k
The “penalty” per parameter to be used; the default k = 2 is the classical AIC.
每个参数的“惩罚”使用默认情况下,K = 2是经典的AIC。


参数:...
An arbitrary number of objects of class mle.ghyp.
任意数量对象类mle.ghyp。


值----------Value----------

Either the Log-Likelihood or the Akaike's Information Criterion.
无论是对数似然或Akaike的信息准则。


注意----------Note----------

The Log-Likelihood as well as the Akaike's Information Criterion can be obtained from the function ghyp.fit.info. However, the benefit of logLik and AIC is that these functions allow a call with an arbitrary number of objects and are better known because they are generic.
方式获得的对数似然,以及作为的Akaike信息准则可以从函数ghyp.fit.info。然而,造福logLik和AIC是,这些功能允许的呼叫,与任意数量的对象,并更好地已知的,因为它们是通用的。


(作者)----------Author(s)----------


David Luethi



参见----------See Also----------

fit.ghypuv, fit.ghypmv, lik.ratio.test,
fit.ghypuv,fit.ghypmv,lik.ratio.test,


实例----------Examples----------


  data(smi.stocks)

  ## Multivariate fit[#多元拟合]
  fit.mv <- fit.hypmv(smi.stocks, nit = 10)
  AIC(fit.mv)
  logLik(fit.mv)

  ## Univariate fit[#单变量拟合]
  fit.uv <- fit.tuv(smi.stocks[, "CS"], control = list(maxit = 10))
  AIC(fit.uv)
  logLik(fit.uv)

  # Both together[这两个一起]
  AIC(fit.uv, fit.mv)
  logLik(fit.uv, fit.mv)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-13 04:13 , Processed in 0.026611 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表