KmeansPlus.RNASeq(MBCluster.Seq)
KmeansPlus.RNASeq()所属R语言包:MBCluster.Seq
Initialize the cluster centroids by a model-based Kmeans++ algorithm
一种基于模型的Kmeans + +算法初始化聚类中心
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The cluster centroids are initialized by a method analogy to Arthur and Vassilvitskii (2007)'s Kmeans++ algorithm
聚类中心初始化的方法比喻亚瑟和Vassilvitskii(2007年)“的Kmeans + +算法
用法----------Usage----------
KmeansPlus.RNASeq(data, nK, model ="nbinom", print.steps=FALSE)
参数----------Arguments----------
参数:data
RNA-Seq data from output of function RNASeq.Data()
RNA-Seq数据从输出功能RNASeq.Data()
参数:nK
The preselected number of cluster centroids
预定数目的聚类中心
参数:model
The probability model for the count data. The distances between the cluster centroids will be calculated based on the likelihood functions. The model can be 'poisson' for Poisson or 'nbinom' for negative binomial distribution.
基于概率模型的计数数据。将计算出的聚类中心之间的距离,根据似然函数。该模型可以泊松泊松或“nbinom负二项分布。
参数:print.steps
print out the proceeding steps or not
打印出来的进行步骤或不
值----------Value----------
<table summary="R valueblock"> <tr valign="top"><td>centers</td> <td> a matrix of nK rows which contains the value cluster centroids. A chosen cluster centroid is the log fold change (log-FC) of a gene across different treatments, normalized to have zero-sum</td></tr> <tr valign="top"><td>ID</td> <td> The ID number of the selected genes whose log-FC are used as the initial cluster centroids</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD>centers</ TD> <td>一个矩阵的NK行包含值聚类中心。一个选择簇质心的log倍的变化(log-FC)的基因在不同的治疗方法,标准化的零和</ TD> </ TR> <tr valign="top"> <TD>ID </ TD> <TD>的ID号,所选基因的logFC作为初始聚类中心</ TD> </ TR> </表>
实例----------Examples----------
###### run the following codes in order[#####运行下面的代码,以]
#[]
# data("Count") ## a sample data set with RNA-seq expressions [数据(“计数”)##的样本数据集与RNA-seq的表达]
# ## for 1000 genes, 4 treatment and 2 replicates[##为1000个基因中,有4治疗,2个重复]
# head(Count)[头(计数)]
# GeneID=1:nrow(Count)[GeneID = 1:NROW(计数)]
# Normalizer=rep(1,ncol(Count))[正规化= REP(1 NCOL(计数))]
# Treatment=rep(1:4,2)[治疗= REP(1:4,2)]
# mydata=RNASeq.Data(Count,Normalize=NULL,Treatment,GeneID) [MYDATA = RNASeq.Data(计数,规范化= NULL,治疗,GeneID)]
# ## standardized RNA-seq data[##标准化RNA-Seq数据]
# c0=KmeansPlus.RNASeq(mydata,nK=10)$centers[C0 = KmeansPlus.RNASeq(MYDATA,NK = 10)$中心]
# ## choose 10 cluster centers to initialize the clustering [##选择10初始化聚类的聚类中心]
# cls=Cluster.RNASeq(data=mydata,model="nbinom",centers=c0,method="EM")$cluster[CLS = MYDATA = Cluster.RNASeq(数据,模型=“nbinom”,中心= C0 =“EM”)$聚类]
# ## use EM algorithm to cluster genes[##使用EM算法簇的基因]
# tr=Hybrid.Tree(data=mydata,cluste=cls,model="nbinom")[TR = Hybrid.Tree(数据= MYDATA,cluste = CLS,模型=“nbinom”)]
# ## bulild a tree structure for the resulting 10 clusters[##bulild的树结构产生的10组]
# plotHybrid.Tree(merge=tr,cluster=cls,logFC=mydata$logFC,tree.title=NULL)[plotHybrid.Tree(合并= TR,聚类=收市,logFC = MYDATA $ logFC,tree.title = NULL)]
# ## plot the tree structure[##图的树状结构]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|