找回密码
 注册
查看: 1067|回复: 0

R语言 spacom包 DescribeAggregate()函数中文帮助文档(中英文对照)

  [复制链接]
发表于 2012-9-30 12:17:21 | 显示全部楼层 |阅读模式
DescribeAggregate(spacom)
DescribeAggregate()所属R语言包:spacom

                                         Descriptives for aggregated contextual indicators
                                         描述统计汇总上下文指标

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Computes descriptives of spatially weighted aggregated contextual indicators.
空间上下文指标加权汇总计算描述统计。


用法----------Usage----------


DescribeAggregate(contextual.data,
context.id,
contextual.names,
contextual.weight.matrices,
nb.resamples = 1000,
aggregation.functions = "mean",
confidence.intervals = 0.95,
individual.weight.names = NULL,
sample.seed = NULL)



参数----------Arguments----------

参数:contextual.data
A data.frame consisting of micro-level data to generate contextual  indicators by aggregation and containing a column named context.id  with the context ID variable. This is an individual level dataframe.   
Adata.frame包括微观层面的数据来生成有关联的聚集指标中包含一列名为context.id上下文ID变量。这是一个个人层面的数据框。


参数:context.id
A name of the context ID variable.  
的上下文ID变量的名称。


参数:contextual.names
A list of names of contextual variables to be weighted.  
Alist进行加权的上下文变量的名称。


参数:contextual.weight.matrices
A list of weights to be applied to each variable specified in contextual.names. A weight may be a weights matrix as, for instance computed by WeightMatrix, or NULL, in which case the corresponding contextual variable is not weighted. If only one weight is defined (instead of a list) it is applied to all contextual variables. Defaults to NULL, which means that none of contextual indicators are weighted.   
Alist权重的被应用到每个指定的变量中contextual.names。作为,例如计算WeightMatrix,或NULL,在这种情况下,相应的上下文变量的权重,权重可能是一个权重矩阵。如果只有一个重量被定义(而不是一个列表),它被应用到所有的上下文变量。默认值,以NULL,这意味着没有上下文指标的权重。


参数:nb.resamples
A number of resamples to be evaluated. By default set to 1000.  
许多重新采样进行评估。默认情况下设置为1000。


参数:aggregation.functions
A list of aggregation functions. Functions take either   <ol>  1 argument in which case the corresponding individual design weight is NULL,   
Alist的聚合函数。的函数采取任何<OL>的1参数,在这种情况下,相应的个性化的设计重量是NULL,

2 arguments in which case the second argument is taken from the corresponding individual design weight. Defaults to "mean".  </ol>  
在这种情况下,第二个参数是从相应的个性化设计重量两个参数。默认为"mean"的。 </ OL>


参数:confidence.intervals
A vector of confidence intervals. Defaults  to c(.95) which corresponds to 95 %.  
Avector的置信区间。默认为c(.95)对应于95%。


参数:individual.weight.names
a list of optional design weights at the individual level used for aggregation (for example, for a weighted mean). List must have same length as contextual.names. May contain NULLs for variables which should not be weighted at the individual level. If only one individual weight is defined (instead of a list) it is applied to all contextual variables. By default set to NULL.  
list用于聚集(例如,用于一个加权均值)在个体水平上的可选的设计重量。列表必须有相同长度的contextual.names。可能含有NULL的,不应该偏重于个人层面上的变量。如果只有一个单独的重量定义的(而不是一个列表),它被应用到所有的上下文变量。默认设置为NULL。


参数:sample.seed
Is one of three things   <ol> NULL, in which case whatever the current random seed is is used  
是<OL>NULL,在这种情况下,无论目前的随机种子使用的三件事情之一

an integer, which will be used to set the random seed. This allows reproducible random samples  
的integer,将用于设置随机种子。这允许重复的随机样本

a saved .Random.seed  which allows reproducible random samples as well. The reason why both b) and c) are present is because .Random.seed can be saved a posteriori.  </ol>  Defaults to NULL.   
已保存的.Random.seed可重现的随机样本,以及。之所以两个B)和C)都存在,因为.Random.seed可以保存后验。 </ OL>默认值到NULL。


值----------Value----------

An object of class DescribeAggregateOutput-class     
对象的类DescribeAggregateOutput-class


(作者)----------Author(s)----------



Till Junge, Sandra Penic, Guy Elcheroth




实例----------Examples----------


# creating spatially weighted (with geographical proximity weights, h=50[创造空间加权(权重与GEO上的接近,H = 50]
# and h=200) contextual indicator of risk of war victimization through[H = 200)上下文的战争受害的风险指标,通过]
# stratified resampling [分层重采样]

# load distance matrix and create weights[加载距离矩阵和权重]
data(d_geo)
geow_50 <- WeightMatrix(d_geo, bandwidth=50)
geow_200 <- WeightMatrix(d_geo, bandwidth=200)

# load contextual indicator for aggregation[加载上下文聚集指标]
data(traces_event)

# perform DescribeAggregate[执行DescribeAggregate]
wv_g50_200 <- DescribeAggregate(
   contextual.data=traces_event,
   context.id="area",
   contextual.names=c("w_all", "w_all"),
   contextual.weight.matrices=list(geow_50, geow_200),
   aggregation.functions="weighted.mean",
   individual.weight.names="weight",
   nb.resamples=5)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-13 11:17 , Processed in 0.023857 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表