找回密码
 注册
查看: 473|回复: 0

R语言 trio包 lrControl()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 12:05:51 | 显示全部楼层 |阅读模式
lrControl(trio)
lrControl()所属R语言包:trio

                                         Control Parameters for Trio Logic Regression
                                         三重奏逻辑回归的控制参数

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Specifies the control parameters for the search algorithms (i.e. either simulated annealing or MCMC) and the logic tree considered when fitting a trio logic regression model.
指定的搜索算法的控制参数(即模拟退火或MCMC)和逻辑树时,会考虑三重奏逻辑回归模型拟合。


用法----------Usage----------


lrControl(start = 0, end = 0, iter = 0, earlyout = 0, update = 0,
   treesize = 8, opers = 1, minmass = 0, nburn = 1000, hyperpars = 0,
   output = 4)



参数----------Arguments----------

参数:start
a numeric value specifying the upper temperature (on log10 scale) used as start temperature in simulated annealing. Must be larger than end. If both start = 0 and end = 0, these temperatures will be chosen automatically (which is not the optimal way to specify these parameters).  
指定一个数值较高的温度作为开始温度模拟退火(LOG10规模)。必须是大于end。如果这两个start = 0和end = 0,这样的温度下将被自动选择(这是不是最佳的方式来指定这些参数)。


参数:end
a numeric value specifying the lowest temperature (on log10 scale) used in simulated annealing. Must be smaller than start. If both start = 0 and end = 0, these temperatures will be chosen automatically (which is not the optimal way to specify these parameters).  
模拟退火算法中使用的一个数字值,该值指定的最低的温度(log10的规模上)。必须小于比start。如果这两个start = 0和end = 0,这样的温度下将被自动选择(这是不是最佳的方式来指定这些参数)。


参数:iter
the number of iterations used in the (stochastic) search for the best trio logic regression model, i.e. either in simulated annealing (if the argument search in trioLR or trioFS is set to "sa") or in MCMC (if search = "mcmc"). If iter = 0, iter will be chosen automatically (similar to start and end) when simulated annealing is used, and will be set to iter = 50000 when MCMC is employed.  
最好的三人逻辑回归模型(随机)搜索在使用迭代的数量,即在模拟退火(如果参数searchtrioLR或trioFS设置为 X>)或MCMC(如果"sa")。如果search = "mcmc",iter = 0将自动选择(类似iter和start)时,使用模拟退火,并会被设置为end当MCMC采用。


参数:earlyout
a non-negative integer providing an option to end the search before all iter iterations in simulated annealing are considered. If during five consecutive blocks of earlyout iterations, 10 or fewer moves proposed in simulated annealing are accepted in each of the blocks, then the search will terminate. Can help to stop the search earlier, when there is no progress in the search anymore. By default, all iter iterations are considered.   
被认为是一个非负的整数,提供一个选项来终止搜索之前所有iter的中的迭代模拟退火。如果在earlyout迭代,10个或更少的5个连续的块移动提出了模拟退火中被接受在每个块中,那么搜索将终止。可以帮助停止搜索,在搜索了时,没有任何进展。默认情况下,所有iter的迭代。


参数:update
the number of iterations in simulated annealing or MCMC after which statistics for the current trio logic regression model are displayed. This argument allows to evaluate the progress in the search for the best trio logic regression model. By default, no updates are shown.  
的迭代次数后,在模拟退火或MCMC当前三人的逻辑回归模型的统计信息被显示。该参数允许在寻找最好的三人逻辑回归模型,以评估进展情况。默认情况下,没有更新。


参数:treesize
a positive integer specifying the maximum number of leaves allowed in the logic tree of a trio logic regression model.  
一个正整数,指定的最大数量的三个一组的逻辑回归模型允许在所述逻辑树的叶子。


参数:opers
either 1, 2, or 3 specifying if both the AND and the OR operator (opers = 1), or only the AND operator (opers = 2), or only the OR operator (opers = 3) is considered when building the logic tree.  
1,2,或3指定如果两个与“和”或“运算符(opers = 1),或仅与运算符(opers = 2),或仅OR运算符(opers = 3)是建立逻辑树时,会考虑。


参数:minmass
a non-negative integer specifying the number of cases and pseudo-controls for which the logic expression (i.e. the logic tree) needs to be 1 or for which the logic expression needs to be 0 to be considered as a logic tree in the trio logic regression model. By default, minmass is either set to 20% of the trios or to 15, whatever is less.  
一个非负整数,指定数量的情况下,和伪控制逻辑表达式(即逻辑树)为1或的逻辑表达式需要被视为一个逻辑树在三重奏逻辑回归模型。缺省情况下,minmass被设置为20%的三重奏,或至15,无论是较少。


参数:nburn
number of initial iterations in MCMC considered as burn-in MC trio logic regression, and therefore, ignored when computing the summaries.  
MCMC认为是烧在MC三人逻辑的回归,因此,计算时忽略摘要的初始迭代数。


参数:hyperpars
a numeric value specifying the hyperparameter for the prior on the model size when performing a MC trio logic regression. More exactly, hyperpars is assumed to be log(P(size = k) / P(size = k+1)), where P is the prior on the model size.  
一个数值时执行MC三人逻辑回归模型大小事先指定的超参数。更确切地说,hyperpars被认为是log(P(size = k) / P(size = k+1)),P是先验模型的大小。


参数:output
a value specifying which statistics are returned in an MCMC trio logic regression analysis. If output > 0, then all fitted models are saved in a text file called "triolrlisting.tmp" in the current working directory. By setting output < 0, this can be avoided. If abs(output) > 1, bivariate statistics are gathered. If abs(output) > 2, trivariate statistics are gathered. Otherwise, only univariate statistics are determined.   
一个值,该值指定的统计信息中返回一个的MCMC三人逻辑回归分析。如果output > 0,那么所有的拟合模型被保存在一个文本文件在当前工作目录中称为“triolrlisting.tmp”。通过设置output < 0,这可避免。如果abs(output) > 1,二元收集统计信息。如果abs(output) > 2,三元收集统计信息。否则,只有单变量统计量是确定的。


Details

详细信息----------Details----------

More details on the different control parameters and their specification can be found on the help pages of the functions logreg.anneal.control, logreg.tree.control, and logreg.mc.control for the different types of control parameters available in the R package LogicReg for a standard logic regressions.  
更多细节功能的帮助页面上不同的控制参数和规格上可以找到logreg.anneal.control,logreg.tree.control和logreg.mc.control不同类型的控制参数,可在R包LogicReg一个标准逻辑回归。


值----------Value----------

A list containing all required control parameters.
一个列表,其中包含所有必要的控制参数。


(作者)----------Author(s)----------



Holger Schwender, <a href="mailto:holger.schwender@udo.edu">holger.schwender@udo.edu</a>


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-15 14:34 , Processed in 0.029953 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表