找回密码
 注册
查看: 388|回复: 0

R语言 tlnise包 tlnise()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 10:44:05 | 显示全部楼层 |阅读模式
tlnise(tlnise)
tlnise()所属R语言包:tlnise

                                        TLNise
                                         TLNise

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Two level Normal independent sampling estimation
两级师范独立的抽样估计


用法----------Usage----------


tlnise(Y, V, w = NA, V0 = NA, prior = NA, N = 1000, seed = NULL,
       Tol = 1e-06, maxiter = 1000, intercept = TRUE, labelY = NA,
       labelYj = NA, labelw = NA, digits = 4, brief = 1, prnt = TRUE)



参数----------Arguments----------

参数:Y
Jxp (or pxJ) matrix of p-dimensional Normal outcomes
JXP(或PXJ)矩阵的p维正常结果


参数:V
pxpxJ array of pxp Level-1 covariances (assumed known)
PXP-1级的协方差pxpxJ阵列(假设已知)


参数:w
Jxq (or qxJ) covariate matrix (adds column of 1's if not included and intercept = TRUE)
Jxq(或QXJ)协方差阵(增加1列如不包括和intercept = TRUE)


参数:V0
"typical" Vj (default is average of Vj's)
“典型的”VJ(默认值是平均的VJ)


参数:prior
prior parameter (see Details)
之前的参数(见详情)


参数:N
number of Constrained Wishart draws for inference
数量的约束威沙特即将进行推理


参数:seed
seed for the random number generator
的随机数发生器的种子


参数:Tol
tolerance for determining modal convergence
公差确定模态收敛


参数:maxiter
maximum number of EM iterations for finding mode
发现的最大数量的EM迭代模式


参数:intercept
if TRUE, an intercept term is included in the regression
如果TRUE,截距项包括在回归


参数:labelY
optional names vector for the J observations
可选的名字向量的J观察


参数:labelYj
optional names vector for the p elements of Yj
可选的名字向量的p元素的YJ


参数:labelw
optional names vector for covariates
可选的名字向量的协变量


参数:digits
number of significant digits for reporting results
一些显着的数字报告结果


参数:brief
level of output, from 0 (minimum) to 2 (maximum)
电平的输出,从0(最小)至2(最大)


参数:prnt
controls printing during execution
在执行过程中控制打印


Details

详细信息----------Details----------

The prior is p(B_0) =     |B_0|^{(prior - p - 1)/2}.  
之前是p(B_0) =     |B_0|^{(prior - p - 1)/2}。

Note that for the prior distribution, prior = -(p+1) corresponds to a uniform on level-2 covariance matrix A (default), prior = 0 is the Jeffreys' prior, and prior = (p+1) is the uniform prior on shrinkage matrix B0.
请注意,先验分布,prior = -(p+1)对应于一个统一的2级协方差矩阵A(默认值),prior = 0是杰弗里斯“之前,和prior = (p+1)是统一前的收缩矩阵B0。


值----------Value----------

tlnise returns a list, the precise contents of which depends on the value of the brief argument.  Setting brief = 2 returns the maximum amount of information.  Setting brief = 1 or brief = 0 returns a subset of that information.
tlnise返回一个列表,其中的确切内容取决于brief参数的值。设置brief = 2返回的最大数量的信息。设置brief = 1或brief = 0返回该信息的一个子集。

If brief = 2, the a list with the following components is returned: <table summary="R valueblock"> <tr valign="top"><td>gamma</td> <td> matrix of posterior mean and SD estimates of Gamma, and thei ratios</td></tr> <tr valign="top"><td>theta</td> <td> pxJ matrix of posterior mean estimates for thetaj's</td></tr> <tr valign="top"><td>SDtheta</td> <td> pxJ matrix of posterior SD estimates for thetaj's</td></tr> <tr valign="top"><td>A</td> <td> pxp estimated posterior mean of variance matrix A</td></tr> <tr valign="top"><td>rtA</td> <td> p-vector of between group SD estimates</td></tr> <tr valign="top"><td>Dgamma</td> <td> rxr estimated posterior covariance matrix for Gamma</td></tr> <tr valign="top"><td>Vtheta</td> <td> pxpxJ array of estimated covariances for thetaj's</td></tr> <tr valign="top"><td>B0</td> <td> pxpxN array of simulated B0 values</td></tr> <tr valign="top"><td>lr</td> <td> N-vector of log density ratios for each B0 value</td></tr> <tr valign="top"><td>lf</td> <td> N-vector of log f(B0|Y) evaluated at each B0</td></tr> <tr valign="top"><td>lf0</td> <td> N-vector of log f0(B0|Y) evaluated at each B0 (f0 is the CWish envelope density for f)</td></tr> <tr valign="top"><td>df</td> <td> degrees of freedom for f0</td></tr> <tr valign="top"><td>Sigma</td> <td> scale matrix for f0</td></tr> <tr valign="top"><td>nvec</td> <td> number of matrices begun, diagonal and off-diagonal elements simulated to get N CWish matrices</td></tr> <tr valign="top"><td>nrej</td> <td> number of rejections that occurred at each step 1,..,p</td></tr> </table>
如果brief = 2,返回了以下组件的列表:<table summary="R valueblock"> <tr valign="top"> <TD> gamma</ TD> <TD>矩阵后的均值和方差的估计伽玛,和其比值</ TD> </ TR> <tr valign="top"> <TD> theta </ TD> <TD> PXJ矩阵验均值估计thetaj </ TD> </ TR> <tr valign="top"> <TD>SDtheta </ TD> <TD>的PXJ矩阵的后SD估计thetaj </ TD> </ TR> <TR VALIGN =“顶”> <TD>A </ TD> <TD> PXP估计后验均值方差矩阵A </ TD> </ TR> <tr valign="top"> <TD> X> </ TD> <TD> P-矢量之间组SD估算</ TD> </ TR> <tr valign="top"> <TD>rtA </ TD> <TD> RXR估计后的协方差矩阵,伽玛</ TD> </ TR> <tr valign="top"> <TD>Dgamma </ TD> <TD> pxpxJ阵列的估计协方差thetaj </ TD> </ TR> <tr valign="top"> <TD> Vtheta </ TD> <TD> pxpxN阵列模拟B0值</ TD> </ TR> <tr valign="top"> <TD> B0</ TD> <TD>每个B0值的记录密度比N-矢量</ TD> </ TR> <tr valign="top"> <TD>lr</ TD <TD> N-矢量的log(B0 | Y)评价每个B0 </ TD> </ TR> <tr valign="top"> <TD> lf </ TD> <TD> N-矢量的logF0(B0 | Y)评估每个B0(为f f0是CWish的信封密度)</ TD> </ TR> <tr valign="top"> <TD>lf0< / TD> <TD>的自由度F0 </ TD> </ TR> <tr valign="top"> <TD> df </ TD> <TD>规模的矩阵为f0 </ TD> </ TR> <tr valign="top"> <TD> Sigma</ TD> <TD>数的矩阵开始,对角和非对角元素模拟得到N CWish矩阵的</ TD> </ TR> <tr valign="top"> <TD>nvec</ TD> <TD>数量的拒绝,发生在每一个步骤1,...,P </ TD> </ TR> </表>


(作者)----------Author(s)----------


S-PLUS original by Philip Everson; R port by Roger D. Peng



参考文献----------References----------

Everson PJ, Morris CN (2000). &ldquo;Inference for Multivariate Normal Hierarchical Models,&rdquo; Journal of the Royal Statistical Society, Series B, 62 (6) 399&ndash;412.

实例----------Examples----------


x &lt;- rnorm(10)  ## Second level[#第二级]
y &lt;- rnorm(10, x)  ## First level means[#第一级手段]

out <- tlnise(Y = y, V = rep(1, 10), w = rep(1, 10), seed = 1234)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-18 23:46 , Processed in 0.026984 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表